PyTorch 使用自定义 C ++类扩展 TorchScript

2020-09-10 10:40 更新
原文: https://pytorch.org/tutorials/advanced/torch_script_custom_classes.html

本教程是自定义运算符教程的后续教程,并介绍了我们为将 C ++类同时绑定到 TorchScript 和 Python 而构建的 API。 该 API 与 pybind11 非常相似,如果您熟悉该系统,则大多数概念都将转移过来。

在 C ++中实现和绑定类

在本教程中,我们将定义一个简单的 C ++类,该类在成员变量中保持持久状态。

// This header is all you need to do the C++ portions of this
// tutorial
#include <torch/script.h>
// This header is what defines the custom class registration
// behavior specifically. script.h already includes this, but
// we include it here so you know it exists in case you want
// to look at the API or implementation.
#include <torch/custom_class.h>


#include <string>
#include <vector>


template <class T>
struct Stack : torch::jit::CustomClassHolder {
  std::vector<T> stack_;
  Stack(std::vector<T> init) : stack_(init.begin(), init.end()) {}


  void push(T x) {
    stack_.push_back(x);
  }
  T pop() {
    auto val = stack_.back();
    stack_.pop_back();
    return val;
  }


  c10::intrusive_ptr<Stack> clone() const {
    return c10::make_intrusive<Stack>(stack_);
  }


  void merge(const c10::intrusive_ptr<Stack>& c) {
    for (auto& elem : c->stack_) {
      push(elem);
    }
  }
};

有几件事要注意:

  • torch/custom_class.h是您需要使用自定义类扩展 TorchScript 的标头。
  • 注意,无论何时使用自定义类的实例,我们都通过c10::intrusive_ptr&lt;&gt;的实例来实现。 将intrusive_ptr视为类似于std::shared_ptr的智能指针。 使用此智能指针的原因是为了确保在语言(C ++,Python 和 TorchScript)之间对对象实例进行一致的生命周期管理。
  • 注意的第二件事是用户定义的类必须继承自torch::jit::CustomClassHolder。 这确保了所有设置都可以处理前面提到的生命周期管理系统。

现在让我们看一下如何使该类对 TorchScript 可见,该过程称为绑定该类:

// Notice a few things:
// - We pass the class to be registered as a template parameter to
//   `torch::jit::class_`. In this instance, we've passed the
//   specialization of the Stack class ``Stack<std::string>``.
//   In general, you cannot register a non-specialized template
//   class. For non-templated classes, you can just pass the
//   class name directly as the template parameter.
// - The single parameter to ``torch::jit::class_()`` is a
//   string indicating the name of the class. This is the name
//   the class will appear as in both Python and TorchScript.
//   For example, our Stack class would appear as ``torch.classes.Stack``.
static auto testStack =
  torch::jit::class_<Stack<std::string>>("Stack")
      // The following line registers the contructor of our Stack
      // class that takes a single `std::vector<std::string>` argument,
      // i.e. it exposes the C++ method `Stack(std::vector<T> init)`.
      // Currently, we do not support registering overloaded
      // constructors, so for now you can only `def()` one instance of
      // `torch::jit::init`.
      .def(torch::jit::init<std::vector<std::string>>())
      // The next line registers a stateless (i.e. no captures) C++ lambda
      // function as a method. Note that a lambda function must take a
      // `c10::intrusive_ptr<YourClass>` (or some const/ref version of that)
      // as the first argument. Other arguments can be whatever you want.
      .def("top", [](const c10::intrusive_ptr<Stack<std::string>>& self) {
        return self->stack_.back();
      })
      // The following four lines expose methods of the Stack<std::string>
      // class as-is. `torch::jit::class_` will automatically examine the
      // argument and return types of the passed-in method pointers and
      // expose these to Python and TorchScript accordingly. Finally, notice
      // that we must take the *address* of the fully-qualified method name,
      // i.e. use the unary `&` operator, due to C++ typing rules.
      .def("push", &Stack<std::string>::push)
      .def("pop", &Stack<std::string>::pop)
      .def("clone", &Stack<std::string>::clone)
      .def("merge", &Stack<std::string>::merge);

使用 CMake 将示例构建为 C ++项目

现在,我们将使用 CMake 构建系统来构建上述 C ++代码。 首先,将到目前为止介绍的所有 C ++代码放入class.cpp/文件中。 然后,编写一个简单的CMakeLists.txt文件并将其放置在同一目录中。 CMakeLists.txt的外观如下:

cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
project(custom_class)


find_package(Torch REQUIRED)


## Define our library target
add_library(custom_class SHARED class.cpp)
set(CMAKE_CXX_STANDARD 14)
## Link against LibTorch
target_link_libraries(custom_class "${TORCH_LIBRARIES}")

另外,创建一个build目录。 您的文件树应如下所示:

custom_class_project/
  class.cpp
  CMakeLists.txt
  build/

现在,要构建项目,请继续从 PyTorch 网站下载适当的 libtorch 二进制文件。 将 zip 存档解压缩到某个位置(在项目目录中可能很方便),并记下将其解压缩到的路径。 接下来,继续调用 cmake,然后进行构建项目:

$ cd build
$ cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
  -- The C compiler identification is GNU 7.3.1
  -- The CXX compiler identification is GNU 7.3.1
  -- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc
  -- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc -- works
  -- Detecting C compiler ABI info
  -- Detecting C compiler ABI info - done
  -- Detecting C compile features
  -- Detecting C compile features - done
  -- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++
  -- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++ -- works
  -- Detecting CXX compiler ABI info
  -- Detecting CXX compiler ABI info - done
  -- Detecting CXX compile features
  -- Detecting CXX compile features - done
  -- Looking for pthread.h
  -- Looking for pthread.h - found
  -- Looking for pthread_create
  -- Looking for pthread_create - not found
  -- Looking for pthread_create in pthreads
  -- Looking for pthread_create in pthreads - not found
  -- Looking for pthread_create in pthread
  -- Looking for pthread_create in pthread - found
  -- Found Threads: TRUE
  -- Found torch: /torchbind_tutorial/libtorch/lib/libtorch.so
  -- Configuring done
  -- Generating done
  -- Build files have been written to: /torchbind_tutorial/build
$ make -j
  Scanning dependencies of target custom_class
  [ 50%] Building CXX object CMakeFiles/custom_class.dir/class.cpp.o
  [100%] Linking CXX shared library libcustom_class.so
  [100%] Built target custom_class

您会发现,构建目录中现在有一个动态库文件。 在 Linux 上,它可能名为libcustom_class.so。 因此,文件树应如下所示:

custom_class_project/
  class.cpp
  CMakeLists.txt
  build/
    libcustom_class.so

从 Python 和 TorchScript 使用 C ++类

现在我们已经将我们的类及其注册编译为.so文件,我们可以将 <cite>.so</cite> 加载到 Python 中并进行尝试。 这是一个演示脚本的脚本:

import torch


## `torch.classes.load_library()` allows you to pass the path to your .so file
## to load it in and make the custom C++ classes available to both Python and
## TorchScript
torch.classes.load_library("libcustom_class.so")
## You can query the loaded libraries like this:
print(torch.classes.loaded_libraries)
## prints {'/custom_class_project/build/libcustom_class.so'}


## We can find and instantiate our custom C++ class in python by using the
## `torch.classes` namespace:
## ## This instantiation will invoke the Stack(std::vector<T> init) constructor
## we registered earlier
s = torch.classes.Stack(["foo", "bar"])


## We can call methods in Python
s.push("pushed")
assert s.pop() == "pushed"


## Returning and passing instances of custom classes works as you'd expect
s2 = s.clone()
s.merge(s2)
for expected in ["bar", "foo", "bar", "foo"]:
    assert s.pop() == expected


## We can also use the class in TorchScript
## For now, we need to assign the class's type to a local in order to
## annotate the type on the TorchScript function. This may change
## in the future.
Stack = torch.classes.Stack


@torch.jit.script
def do_stacks(s : Stack): # We can pass a custom class instance to TorchScript
    s2 = torch.classes.Stack(["hi", "mom"]) # We can instantiate the class
    s2.merge(s) # We can call a method on the class
    return s2.clone(), s2.top()  # We can also return instances of the class
                                 # from TorchScript function/methods


stack, top = do_stacks(torch.classes.Stack(["wow"]))
assert top == "wow"
for expected in ["wow", "mom", "hi"]:
    assert stack.pop() == expected

使用自定义类保存,加载和运行 TorchScript 代码

我们也可以在使用 libtorch 的 C ++进程中使用自定义注册的 C ++类。 举例来说,让我们定义一个简单的nn.Module,该实例在我们的 Stack 类上实例化并调用一个方法:

import torch


torch.classes.load_library('libcustom_class.so')


class Foo(torch.nn.Module):
    def __init__(self):
        super().__init__()


    def forward(self, s : str) -> str:
        stack = torch.classes.Stack(["hi", "mom"])
        return stack.pop() + s


scripted_foo = torch.jit.script(Foo())
print(scripted_foo.graph)


scripted_foo.save('foo.pt')

我们文件系统中的foo.pt现在包含我们刚刚定义的序列化 TorchScript 程序。

现在,我们将定义一个新的 CMake 项目,以展示如何加载此模型及其所需的.so 文件。 有关如何执行此操作的完整说明,请查看在 C ++教程中加载 TorchScript 模型。

与之前类似,让我们创建一个包含以下内容的文件结构:

cpp_inference_example/
  infer.cpp
  CMakeLists.txt
  foo.pt
  build/
  custom_class_project/
    class.cpp
    CMakeLists.txt
    build/

请注意,我们已经复制了序列化的foo.pt文件以及上面custom_class_project的源代码树。 我们将添加custom_class_project作为对此 C ++项目的依赖项,以便我们可以将自定义类构建到二进制文件中。

让我们用以下内容填充infer.cpp

#include <torch/script.h>


#include <iostream>
#include <memory>


int main(int argc, const char* argv[]) {
  torch::jit::script::Module module;
  try {
    // Deserialize the ScriptModule from a file using torch::jit::load().
    module = torch::jit::load("foo.pt");
  }
  catch (const c10::Error& e) {
    std::cerr << "error loading the model\n";
    return -1;
  }


  std::vector<c10::IValue> inputs = {"foobarbaz"};
  auto output = module.forward(inputs).toString();
  std::cout << output->string() << std::endl;
}

同样,让我们​​定义我们的 CMakeLists.txt 文件:

cmake_minimum_required(VERSION 3.1 FATAL_ERROR)
project(infer)


find_package(Torch REQUIRED)


add_subdirectory(custom_class_project)


## Define our library target
add_executable(infer infer.cpp)
set(CMAKE_CXX_STANDARD 14)
## Link against LibTorch
target_link_libraries(infer "${TORCH_LIBRARIES}")
## This is where we link in our libcustom_class code, making our
## custom class available in our binary.
target_link_libraries(infer -Wl,--no-as-needed custom_class)

您知道练习:cd buildcmakemake

$ cd build
$ cmake -DCMAKE_PREFIX_PATH=/path/to/libtorch ..
  -- The C compiler identification is GNU 7.3.1
  -- The CXX compiler identification is GNU 7.3.1
  -- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc
  -- Check for working C compiler: /opt/rh/devtoolset-7/root/usr/bin/cc -- works
  -- Detecting C compiler ABI info
  -- Detecting C compiler ABI info - done
  -- Detecting C compile features
  -- Detecting C compile features - done
  -- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++
  -- Check for working CXX compiler: /opt/rh/devtoolset-7/root/usr/bin/c++ -- works
  -- Detecting CXX compiler ABI info
  -- Detecting CXX compiler ABI info - done
  -- Detecting CXX compile features
  -- Detecting CXX compile features - done
  -- Looking for pthread.h
  -- Looking for pthread.h - found
  -- Looking for pthread_create
  -- Looking for pthread_create - not found
  -- Looking for pthread_create in pthreads
  -- Looking for pthread_create in pthreads - not found
  -- Looking for pthread_create in pthread
  -- Looking for pthread_create in pthread - found
  -- Found Threads: TRUE
  -- Found torch: /local/miniconda3/lib/python3.7/site-packages/torch/lib/libtorch.so
  -- Configuring done
  -- Generating done
  -- Build files have been written to: /cpp_inference_example/build
$ make -j
  Scanning dependencies of target custom_class
  [ 25%] Building CXX object custom_class_project/CMakeFiles/custom_class.dir/class.cpp.o
  [ 50%] Linking CXX shared library libcustom_class.so
  [ 50%] Built target custom_class
  Scanning dependencies of target infer
  [ 75%] Building CXX object CMakeFiles/infer.dir/infer.cpp.o
  [100%] Linking CXX executable infer
  [100%] Built target infer

现在我们可以运行令人兴奋的 C ++二进制文件:

$ ./infer
  momfoobarbaz

难以置信!

定义自定义 C ++类的序列化/反序列化方法

如果您尝试将具有自定义绑定 C ++类的ScriptModule保存为属性,则会出现以下错误:

# export_attr.py
import torch


torch.classes.load_library('libcustom_class.so')


class Foo(torch.nn.Module):
  def __init__(self):
      super().__init__()
      self.stack = torch.classes.Stack(["just", "testing"])


  def forward(self, s : str) -> str:
      return self.stack.pop() + s


scripted_foo = torch.jit.script(Foo())


scripted_foo.save('foo.pt')
$ python export_attr.py
RuntimeError: Cannot serialize custom bound C++ class __torch__.torch.classes.Stack. Please define serialization methods via torch::jit::pickle_ for this class. (pushIValueImpl at ../torch/csrc/jit/pickler.cpp:128)

这是因为 TorchScript 无法自动找出 C ++类中保存的信息。 您必须手动指定。 这样做的方法是使用class_上的特殊def_pickle方法在类上定义__getstate____setstate__方法。

注意

TorchScript 中__getstate____setstate__的语义与 Python pickle 模块的语义相同。 您可以阅读更多有关如何使用这些方法的信息。

这是一个如何更新Stack类的注册码以包含序列化方法的示例:

static auto testStack =
  torch::jit::class_<Stack<std::string>>("Stack")
      .def(torch::jit::init<std::vector<std::string>>())
      .def("top", [](const c10::intrusive_ptr<Stack<std::string>>& self) {
        return self->stack_.back();
      })
      .def("push", &Stack<std::string>::push)
      .def("pop", &Stack<std::string>::pop)
      .def("clone", &Stack<std::string>::clone)
      .def("merge", &Stack<std::string>::merge)
      // class_<>::def_pickle allows you to define the serialization
      // and deserialization methods for your C++ class.
      // Currently, we only support passing stateless lambda functions
      // as arguments to def_pickle
      .def_pickle(
            // __getstate__
            // This function defines what data structure should be produced
            // when we serialize an instance of this class. The function
            // must take a single `self` argument, which is an intrusive_ptr
            // to the instance of the object. The function can return
            // any type that is supported as a return value of the TorchScript
            // custom operator API. In this instance, we've chosen to return
            // a std::vector<std::string> as the salient data to preserve
            // from the class.
            [](const c10::intrusive_ptr<Stack<std::string>>& self)
                -> std::vector<std::string> {
              return self->stack_;
            },
            // __setstate__
            // This function defines how to create a new instance of the C++
            // class when we are deserializing. The function must take a
            // single argument of the same type as the return value of
            // `__getstate__`. The function must return an intrusive_ptr
            // to a new instance of the C++ class, initialized however
            // you would like given the serialized state.
            [](std::vector<std::string> state)
                -> c10::intrusive_ptr<Stack<std::string>> {
              // A convenient way to instantiate an object and get an
              // intrusive_ptr to it is via `make_intrusive`. We use
              // that here to allocate an instance of Stack<std::string>
              // and call the single-argument std::vector<std::string>
              // constructor with the serialized state.
              return c10::make_intrusive<Stack<std::string>>(std::move(state));
            });

注意

我们采用与 pickle API 中的 pybind11 不同的方法。 pybind11 作为传递给class_::def()的特殊功能pybind11::pickle(),为此我们有一个单独的方法def_pickle。 这是因为名称torch::jit::pickle已经被使用,我们不想引起混淆。

以这种方式定义(反)序列化行为后,脚本现在可以成功运行:

import torch


torch.classes.load_library('libcustom_class.so')


class Foo(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.stack = torch.classes.Stack(["just", "testing"])


    def forward(self, s : str) -> str:
        return self.stack.pop() + s


scripted_foo = torch.jit.script(Foo())


scripted_foo.save('foo.pt')
loaded = torch.jit.load('foo.pt')


print(loaded.stack.pop())
$ python ../export_attr.py
testing

结论

本教程向您介绍了如何向 TorchScript(以及扩展为 Python)公开 C ++类,如何注册其方法,如何从 Python 和 TorchScript 使用该类以及如何使用该类保存和加载代码以及运行该代码。 在独立的 C ++过程中。 现在,您可以使用与第三方 C ++库接口的 C ++类扩展 TorchScript 模型,或实现需要 Python,TorchScript 和 C ++之间的界线才能平滑融合的任何其他用例。

与往常一样,如果您遇到任何问题或疑问,可以使用我们的论坛或 GitHub 问题进行联系。 另外,我们的常见问题解答(FAQ)页面可能包含有用的信息。




以上内容是否对您有帮助:
在线笔记
App下载
App下载

扫描二维码

下载编程狮App

公众号
微信公众号

编程狮公众号