使用canal+Kafka进行数据库同步操作

猿友 2020-08-17 14:03:55 浏览数 (7418)
反馈

平时工作中数据库是我们经常使用的,在微服务拆分的架构中,各服务拥有自己的数据库,所以常常会遇到服务之间数据通信的问题。比如,B 服务数据库的数据来源于A服务的数据库;A 服务的数据有变更操作时,需要同步到 B 服务中。

第一种解决方案:

在代码逻辑中,有相关 A 服务数据写操作时,以调用接口的方式,调用 B 服务接口,B 服务再将数据写到新的数据库中。这种方式看似简单,但其实“坑”很多。在 A 服务代码逻辑中会增加大量这种调用接口同步的代码,增加了项目代码的复杂度,以后会越来越难维护。并且,接口调用的方式并不是一个稳定的方式,没有重试机制,没有同步位置记录,接口调用失败了怎么处理,突然的大量接口调用会产生的问题等,这些都要考虑并且在业务中处理。这里会有不少工作量。想到这里,就将这个方案排除了。

(推荐课程:SQL教程)

第二种解决方案:

通过数据库的binlog进行同步。这种解决方案,与 A 服务是独立的,不会和 A 服务有代码上的耦合。可以直接 TCP连接进行传输数据,优于接口调用的方式。 这是一套成熟的生产解决方案,也有不少binlog同步的中间件工具,所以我们关注的就是哪个工具能够更好的构建稳定、性能满足且易于高可用部署的方案。

经过调研,我们选择了canalcanal是阿里巴巴 MySQL binlog 增量订阅&消费组件,已经有在生产上实践的例子,并且方便的支持和其他常用的中间件组件组合,比如kafkaelasticsearch等,也有了canal-go go语言的client库,满足我们在go上的需求,其他具体内容参阅canalgithub主页。

原理简图

![原理简图](https://atts.w3cschool.cn/attachments/image/20200817/1597643005519402.jpg "原理简图")

![原理简图](https://atts.w3cschool.cn/attachments/image/20200817/1597643026794359.jpg "原理简图")

OK,开始干!现在要将 A 数据库的数据变更同步到 B 数据库。根据wiki很快就用docker跑起了一台canal-server服务,直接用canal-gocanal-client代码逻辑。用canal-go直接连canal-servercanal-servercanal-client之间是Socket来进行通信的,传输协议是TCP,交互协议采用的是 Google Protocol Buffer 3.0

工作流程

  1. Canal连接到 A 数据库,模拟slave
  2. canal-clientCanal建立连接,并订阅对应的数据库表
  3. A 数据库发生变更写入到binlogCanal向数据库发送dump请求,获取binlog并解析,发送解析后的数据给canal-client
  4. canal-client收到数据,将数据同步到新的数据库

Protocol Buffer的序列化速度还是很快的。反序列化后得到的数据,是每一行的数据,按照字段名和字段的值的结构,放到一个数组中 代码简单示例:

func Handler(entry protocol.Entry) { var keys []string rowChange := &protocol.RowChange{} proto.Unmarshal(entry.GetStoreValue(), rowChange) if rowChange != nil { eventType := rowChange.GetEventType() for _, rowData := range rowChange.GetRowDatas() { // 遍历每一行数据 if eventType == protocol.EventType_DELETE || eventType == protocol.EventType_UPDATE { columns := rowData.GetBeforeColumns() // 得到更改前的所有字段属性 } else if eventType == protocol.EventType_INSERT { columns := rowData.GetAfterColumns() // 得到更后前的所有字段属性 } ...... } } }

遇到的问题

为了高可用和更高的性能,我们会创建多个canal-client构成一个集群,来进行解析并同步到新的数据库。这里就出现了一个比较重要的问题,如何保证canal-client集群解析消费binlog的顺序性呢?

我们使用的binlogrow模式。每一个写操作都会产生一条binlog日志。 举个简单的例子:插入了一条 a 记录,并且立马修改 a 记录。这样会有两个消息发送给canal-client,如果由于网络等原因,更新的消息早于插入的消息被处理了,还没有插入记录,更新操作的最后效果是失败的。

怎么办呢? canal可以和消息队列组合呀!而且支持kafkarabbitmqrocketmq多种选择,如此优秀。我们在消息队列这层来实现消息的顺序性。

选择canal+kafka方案

我们选择了消息队列的业界标杆: kafka UCloud提供了kafkarocketMQ消息队列产品服务,使用它们能够快速便捷的搭建起一套消息队列系统。加速开发,方便运维。

下面就让我们来一探究竟:

1.选择kafka消息队列产品,并申请开通

![kafka消息队列](https://atts.w3cschool.cn/attachments/image/20200817/1597643207499951.jpg "kafka消息队列")

2.开通完成后,在管理界面,创建kafka集群,根据自身需求,选择相应的硬件配置

![硬件配置](https://atts.w3cschool.cn/attachments/image/20200817/1597643247605810.jpg "硬件配置")

3.一个kafka + ZooKeeper集群就搭建出来了,给力!

![kafka+ZooKeeper集群](https://atts.w3cschool.cn/attachments/image/20200817/1597643275823817.jpg "kafka+ZooKeeper集群")

并且包含了节点管理、Topic管理、Consumer Group管理,能够非常方便的直接在控制台对配置进行修改

监控视图方面,监控的数据包括kafka生成和消费QPS,集群监控,ZooKeeper的监控。能够比较完善的提供监控指标。

![监控指标](https://atts.w3cschool.cn/attachments/image/20200817/1597643316579478.jpg "监控指标")

![监控指标](https://atts.w3cschool.cn/attachments/image/20200817/1597643347799100.jpg "监控指标")

![监控指标](https://atts.w3cschool.cn/attachments/image/20200817/1597643363690805.jpg "监控指标")

canal的kafka配置

canal配上kafka也非常的简单。 vi /usr/local/canal/conf/canal.properties

...

# 可选项: tcp(默认), kafka, RocketMQ
canal.serverMode = kafka
# ...
# kafka/rocketmq 集群配置: 192.168.1.117:9092,192.168.1.118:9092,192.168.1.119:9092
canal.mq.servers = 127.0.0.1:9002
canal.mq.retries = 0
# flagMessage模式下可以调大该值, 但不要超过MQ消息体大小上限
canal.mq.batchSize = 16384
canal.mq.maxRequestSize = 1048576
# flatMessage模式下请将该值改大, 建议50-200
canal.mq.lingerMs = 1
canal.mq.bufferMemory = 33554432
# Canal的batch size, 默认50K, 由于kafka最大消息体限制请勿超过1M(900K以下)
canal.mq.canalBatchSize = 50
# Canal get数据的超时时间, 单位: 毫秒, 空为不限超时
canal.mq.canalGetTimeout = 100
# 是否为flat json格式对象
canal.mq.flatMessage = false
canal.mq.compressionType = none
canal.mq.acks = all
# kafka消息投递是否使用事务
canal.mq.transaction = false


# mq config
canal.mq.topic=default
# dynamic topic route by schema or table regex
#canal.mq.dynamicTopic=mytest1.user,mytest2\\\\..*,.*\\\\..*
canal.mq.dynamicTopic=mydatabase.mytable
canal.mq.partition=0
# hash partition config
canal.mq.partitionsNum=3
canal.mq.partitionHash=mydatabase.mytable

解决顺序消费问题

看到下面这一行配置

canal.mq.partitionHash=mydatabase.mytable

我们配置了kafkapartitionHash,并且我们一个Topic就是一个表。这样的效果就是,一个表的数据只会推到一个固定的partition中,然后再推给consumer进行消费处理,同步到新的数据库。通过这种方式,解决了之前碰到的binlog日志顺序处理的问题。这样即使我们部署了多个kafka consumer端,构成一个集群,这样consumer从一个partition消费消息,就是消费处理同一个表的数据。这样对于一个表来说,牺牲掉了并行处理,不过个人觉得,凭借kafka的性能强大的处理架构,我们的业务在kafka这个节点产生瓶颈并不容易。并且我们的业务目的不是实时一致性,在一定延迟下,两个数据库保证最终一致性。

(推荐微课:SQL微课)

下图是最终的同步架构,我们在每一个服务节点都实现了集群化。全都跑在UCloudUK8s服务上,保证了服务节点的高可用性。

canal也是集群换,但是某一时刻只会有一台canal在处理binlog,其他都是冗余服务。当这台canal服务挂了,其中一台冗余服务就会切换到工作状态。同样的,也是因为要保证binlog的顺序读取,所以只能有一台canal在工作。

![最终同步架构](https://atts.w3cschool.cn/attachments/image/20200817/1597643437868571.jpg "最终同步架构")

并且,我们还用这套架构进行缓存失效的同步。我们使用的缓存模式是:Cache-Aside。同样的,如果在代码中数据更改的地方进行缓存失效操作,会将代码变得复杂。所以,在上述架构的基础上,将复杂的触发缓存失效的逻辑放到kafka-client端统一处理,达到一定解耦的目的。

以上就是关于使用canal + Kafka进行数据库同步操作的相关介绍了,希望对大家有所帮助。

0 人点赞